본문 바로가기

포항공과대학교 생명과학과





유주연 교수


세포소기관 네트워크 연구실
세포소기관(막) 네트워크, LLPS 기반 단백질 응집체, 바이러스-숙주 반응

Research introduction

1. Cellular mechanisms driven by Membrane-bound Biomolecular condensates
LLPS (liquid-liquid phase separation) is a phenomenon wherein macromolecules within a solution undergo de-mixing, resulting in the compartmentalization of cellular spaces in the absence of membranes. However, when LLPS occurs on or near membranes, it induces curvature deformation and interferes with the natural functions of the membrane. The protein or lipid components of membranes, as well as the membrane itself, play a crucial role in influencing the dynamics of molecular condensates. They can either facilitate the assembly reactions or lower the critical concentrations required for phase separation. In our laboratory, we are currently engaged in the exploration of cellular events and their regulation, specifically focusing on molecular condensates bound to intracellular membranes. We aims to unravel the intricate interplay between these condensates and membranes, understanding their impact on cellular processes and potentially for manipulating cellular behavior.

2. Organelle contact regulation via condensate assembly
The organelle contact, mediated by tethering complexes situated at the junctions between membranes of distinct organelles, plays a pivotal role in governing the biogenesis, dynamics, and homeostasis of organelles. Furthermore, it exerts control over signaling cascades and material transport within the cell. Given that a myriad of cellular activities are orchestrated at these organelle contact points, it is important to elucidate the mechanisms underlying their formation and regulation. In our laboratory, we are currently investigating membrane tethering mediated by molecular condensates and its implications under various physiological and pathological conditions. Our focus extends to exploring how these interactions are affected in scenarios such as virus infections, inflammation, and cancerous environments.

3. Bio-Membrane engineering toward Cell-Gene Therapy (CGT) Technology
One of the foremost challenges in advancing CGT technology lies in developing effective strategies for delivering genetic materials or cargoes into cells, overcoming the barriers presented by cell membranes. Leveraging expertise in organelle tethering and biomolecular condensates, our goal is to innovate methods that enhance the delivery efficiency and target specificity, offering valuable contributions to the field of CGT technology.

학부생을 위한 실험실 소개

주제 1 – 막성 단백질에 의한 상분리 연구
액체-액체 상분리 (LLPS: Liquid-liquid phase separation)는 수용성의 거대 생체 분자들이 세포질 혹은 핵질 내에서 de-mixing 됨으로서, 막을 이용하지 않으면서 기능적인 세포 내 구획화를 이루어 내는 물리적 현상이다. 본 연구실에서는 이러한 LLPS 현상이 막 상에서 일어남으로서 유도되는 생체막의 구조적, 기능적, 생리학적 변형이 세포의 다양한 활성 조절에 관여하는 분자, 세포적 기전 규명에 초점을 맞춰 연구를 진행하고 있다.

주제 2 – 상분리 단백질을 활용한 세포소기관(막) 네트워크 조절 연구
세포 내 다양한 기능을 수행하는 막성 세포소기관들의 세포 내 활성, 다이나믹스, 생성, 제거 등의 일련의 과정에는 소기관 막 사이의 접촉(membrane tethering) 이라는 현상이 수반된다. 본 연구실에서는 막성 세포소기관 사이의 contact & communication 에 대한 분자 수준의 이해를 바탕으로 세포 내 신호전달·자가포식·면역반응 등 다양한 생리활성의 조절 기전을 이해하기 위한 연구를 진행하고 있다. 특히 이 과정에서 상분리 단백질에 의해 매개되는 세포소기관 네트워크의 조절 과정이 현재 활발히 연구되고 있다.

주제 3 – 생체막 엔지니어링을 통한 유전자·세포 치료의 원천기술 개발 연구
본 연구실은 세포소기관, 생체막, 생체 분자 응축물에 관한 연구 역량을 바탕으로 생체막이나 세포소기관의 활성, 이동, 다이나믹스 등을 제어할 수 있는 기술 개발 연구를 진행하고 있다. 이를 통해 유전 물질이나 약물 등의 세포 내 전달 과정의 효율성(delivery efficiency)과 특이성(target specificity)을 높인 유전자·세포치료제의 원천기술을 개발하고자 한다.

Research Area

  • Liquid-liquid phase separation, biomolecular condensates
  • Endoplasmic reticulum-endosome, -autophagosome, -mitochondria network regulation
  • ER stress responses, autophagy, ER-phagy, ER-Golgi vesicle trafficking, endosome trafficking
  • Anti-viral innate host cellular responses

Major publications

  • Kim N. et al., (2023) Intrinsically disordered region-mediated condensation of IFN-inducible SCOTIN/SHISA-5 inhibits ER-to-Golgi vesicle transport. Developmental Cell 58(19),1950-1966.
  • Yun HR et al., (2023) Homotypic SCOTIN assemblies form ER-endosome membrane contacts and regulate endosome dynamics. EMBO Reports 24(8) e56538.
  • Lee JE et al., (2021) SHISA5/SCOTIN restrains spontaneous autophagy induction by blocking contact between the ERES and phagophores. Autophagy 18(7),1613-1628.
  • Seo JH et al., (2020) MTFMT deficiency correlates with reduced mitochondrial integrity and enhanced host susceptibility to intracellular infection. Scientific Reports 10(1):11183.
  • Ahn N et al., (2019) The Interferon-Inducible Proteoglycan Testican-2/SPOCK2 Functions as a Protective Barrier against Virus Infection of Lung Epithelial Cells. Journal of Virology 93(20):e00662.


  • B.A., Seoul National University, Seoul, Korea (1989)
  • M.S., Seoul National University, Seoul, Korea (1991)
  • Ph.D., University of Maryland, School of Medicine, Baltimore, USA (1997)


  • 1997-2004 : Postdoctoral Fellow/Research Associate, Howard Hughes Medical Institute, The Johns Hopkins Univ., Baltimore, USA
  • 2004-Present : Assistant, Associate, Full professor, Dept. of life sciences, POSTECH, Pohang, Korea.
  • 2017-Present : Director, Organelle Network Research Center (ONRC-SRC)
  • 2023-Present : Director, Innovation Research Center for Bio-Future Technology (B-IRC)


  • Identify interferon- and DNA-damage inducible proteins of anti-viral (HCV, HIV) activity
  • Investigation of the LLPS behavior of biomolecular condensate made of integral ER proteins in vitro and in cellulo.
  • Investigation of the ER to Golgi vesicle trafficking and endosome dynamics regulation via biomolecular condensate on ER membranes
  • Investigation of the p53 mRNA decay mechanism utilizing stress granule

Research Image

Joo Yeon Yoo_Research image

Joo Yeon Yoo_Research image

Research Youtube