1. Cellular mechanisms driven by Membrane-bound Biomolecular condensates
LLPS (liquid-liquid phase separation) is a phenomenon wherein macromolecules within a solution undergo de-mixing, resulting in the compartmentalization of cellular spaces in the absence of membranes. However, when LLPS occurs on or near membranes, it induces curvature deformation and interferes with the natural functions of the membrane. The protein or lipid components of membranes, as well as the membrane itself, play a crucial role in influencing the dynamics of molecular condensates. They can either facilitate the assembly reactions or lower the critical concentrations required for phase separation. In our laboratory, we are currently engaged in the exploration of cellular events and their regulation, specifically focusing on molecular condensates bound to intracellular membranes. We aims to unravel the intricate interplay between these condensates and membranes, understanding their impact on cellular processes and potentially for manipulating cellular behavior.
2. Organelle contact regulation via condensate assembly
The organelle contact, mediated by tethering complexes situated at the junctions between membranes of distinct organelles, plays a pivotal role in governing the biogenesis, dynamics, and homeostasis of organelles. Furthermore, it exerts control over signaling cascades and material transport within the cell. Given that a myriad of cellular activities are orchestrated at these organelle contact points, it is important to elucidate the mechanisms underlying their formation and regulation. In our laboratory, we are currently investigating membrane tethering mediated by molecular condensates and its implications under various physiological and pathological conditions. Our focus extends to exploring how these interactions are affected in scenarios such as virus infections, inflammation, and cancerous environments.
3. Bio-Membrane engineering toward Cell-Gene Therapy (CGT) Technology
One of the foremost challenges in advancing CGT technology lies in developing effective strategies for delivering genetic materials or cargoes into cells, overcoming the barriers presented by cell membranes. Leveraging expertise in organelle tethering and biomolecular condensates, our goal is to innovate methods that enhance the delivery efficiency and target specificity, offering valuable contributions to the field of CGT technology.